Predicted structures of apolipoprotein II mRNA constrained by nuclease and dimethyl sulfate reactivity: stable secondary structures occur predominantly in local domains via intraexonic base pairing.
نویسندگان
چکیده
Analyses of apolipoprotein II mRNA with chemical and enzymatic probes showed that double- and single-stranded regions were distributed uniformly along the mRNA except for a large (72 nucleotides) single-stranded region containing the translation stop codon. Secondary structure models constrained by the experimental data were made by varying the distance (along the mRNA) over which base pairing was allowed. Four prominent secondary structures were seen with restrictions of 165, 330, or 659 nucleotides suggesting that such structures from via local interactions over distances of 50-120 nucleotides. Predicted long range interactions involve only 2-3 base pairs while local interactions involve helices of 4-10 base pairs. Predicted helices of greater than or equal to 4 base pairs occur primarily within exons, raising the possibility that prominent secondary structures in mRNAs may be largely due to intraexonic base pairing. Tests of single- and double-stranded domains by oligonucleotide-directed RNase H cleavage and primer extension were in accord with the structure model and with nuclease and chemical modification data. The model predicting base pairing between the coding and the 3' noncoding regions was tested by RNase H cleavage followed by oligo(dT)-cellulose chromatography to separate 5' and 3' mRNA fragments. Most (82%) of the 5' fragment remained associated with the 3' noncoding region in a structure with a tm = 50 degrees C in 0.2 M Na+ suggesting that this stem could be stable in vivo. This stem may be stable in the isolated mRNA, but would likely occur transiently in polyribosomal apolipoprotein II mRNA due to ribosome transit through the 5' side of the stem. Alternate structures may occur in this region during ribosome transit and play a role in translation termination or in determining the susceptibility of the mRNA to degradation.
منابع مشابه
Editing domains of Trypanosoma brucei mitochondrial RNAs identified by secondary structure.
The posttranscriptional insertion and deletion of U residues in trypanosome mitochondrial transcripts called RNA editing initiates at the 3' end of precisely defined editing domains that can be identified independently of the cognate guide RNA. The regions where editing initiates in Trypanosoma brucei cytochrome b and cytochrome oxidase subunit II preedited mRNAs are specifically cleaved by a t...
متن کاملEvidence for the translational attenuation model: ribosome-binding studies and structural analysis with an in vitro run-off transcript of ermC.
Several features of the translational attenuation model of ermC regulation were tested. This model predicts two possible secondary structures for the leader of the ermC transcript and requires that the leader contains two Shine-Dalgarno (SD) sequences. The ribosome binding site for a leader peptide (SD1) is predicted to be accessible, whereas that for the rRNA methylase protein that confers ery...
متن کاملDirect identification of base-paired RNA nucleotides by correlated chemical probing.
Many RNA molecules fold into complex secondary and tertiary structures that play critical roles in biological function. Among the best-established methods for examining RNA structure are chemical probing experiments, which can report on local nucleotide structure in a concise and extensible manner. While probing data are highly useful for inferring overall RNA secondary structure, these data do...
متن کاملContacts between Escherichia coli RNA polymerase and a lac operon promoter.
The chemical alkylating agent dimethyl sulfate can probe the interaction between Escherichia coli RNA polymerase (nucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6) and the purine bases of a promoter. This agent methylates the N7 position on guanine or the N3 position on adenine; the bound protein can either protect these positions or affect the reactivity to produce an enhanced met...
متن کاملDFT study of dimers of dimethyl sulfoxide in gas phase
Density functional (DFT) calculations at M05-2x/aug-cc-pVDZ level were used to analyze the interactions between dimethyl sulfoxide (DMSO) dimers. The structures obtained have been analyzed with the Atoms in Molecules (AIMs) and Natural Bond Orbital (NBO) methodologies. Four minima were located on the potential energy surface of the dimers. Three types of interactions are observed, CH•••O, CH•••...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 264 14 شماره
صفحات -
تاریخ انتشار 1989